If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-20Y^2+1114Y-9010
We move all terms to the left:
-(-20Y^2+1114Y-9010)=0
We get rid of parentheses
20Y^2-1114Y+9010=0
a = 20; b = -1114; c = +9010;
Δ = b2-4ac
Δ = -11142-4·20·9010
Δ = 520196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{520196}=\sqrt{4*130049}=\sqrt{4}*\sqrt{130049}=2\sqrt{130049}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1114)-2\sqrt{130049}}{2*20}=\frac{1114-2\sqrt{130049}}{40} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1114)+2\sqrt{130049}}{2*20}=\frac{1114+2\sqrt{130049}}{40} $
| |x-1|+3=5 | | 5x+13+x=45 | | |3x+4|=5 | | 9x-5x+x=25 | | 3/4z=2/4 | | -4+4x=1+5x | | -0.2x-1.65=0.45 | | n=8+2*5 | | 2s-s=17 | | 1/10=x/40 | | x-2.02=(-58) | | 1/3+5/12x-2=20/3 | | 1/3x+3/4x=13 | | 209=-7(1+5v)-v | | 24x+12=2(12x+6)= | | 6x+5=4x+-9 | | n=8*2+5 | | 1/4m-1/2=3/4 | | 1/25x=19 | | -9.5x+0.35=-7.25 | | -8v+4=44 | | -190=-5(4x+6) | | 8+2*5=n | | 9x-16/x=5 | | 1/8x-1/4=3/8 | | -8(b+6)=-88 | | 28-6x=10=12x | | (8n/3)=-24 | | 12(x+3)-3x=177 | | 12/2+4x=23 | | 11/2x+11/4x=22 | | 3(2w-7)=8 |